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Abstract: Trajectories of conservative dynamical systems are particular examples
of harmonic maps. If Y is the configuration space of a dynamical system, then a trajectory
of the system is a harmonic map from the real line into Y. More generally, let X and Y be
riemannian manifolds with X compact. We show that the image of any harmonic map f
from X to Y cannot be contained in domains which are too small; specifically, that the
image of any such f cannot be contained on any domain which supports a convex function.
From a modification of the proof we show that, except in the neighborhoods of certain
exceptional points, a trajectory of a dynamical system cannot lie entirely in any such
domain. This fact leads to criteria for the growth and instability of dynamical systems.

INTRODUCTION

In Part I of this report we announce some results which we have recently obtained in the
theory of harmonic maps, of which a more detailed account with proofs will be given in a forth-
coming paper [1]. Part Il is devoted to a discussion of some possible applications of these
results to the study of the stability of Hamiltonian systems. _

For the convenience of those readers who may wish to go immediately to Part 11 we now
introduce some necessary concepts. Let Y be a smooth riemannian manifold with local coordinates
yi, metric tensor k;;, and Christoffel symbols I'};. The coefficients of the second-order covariant
differential of a function F with continuous second-order derivatives are given by

PF L OF
3y ay’ ij ay*’

Fiy=

where here, as always, we use the tensor summation convention. We shall say that F is convex
in a domain D of Y iff at every point p of D we have F;;£1£/ > 0 for every nonzero contravariant
vector £. (In symbols, we shall write (F;;) > 0 (in D).) A domain D will be said to be convex
supporting iff there exists a convex function F on D. (A more general definition is used in Part
1, section 1-A.) Examples of convex-supporting manifolds and domains are given in section 1-C
of Part I, Theorem 3 in section 1-B, and remark 2 in section 1-A. :

Let y = y(¢) be a curve on Y. The second-order covariant derivative is given by

Dry' _dy' o dyl dy*
dez ~ de? K de de

Hence the analytic condition that the curve be a geodesic is given by D2?yi/dt> = 0. Let Fbea
C? function, y = y(¢) be a curve on Y, and G(t) = F[y(¢)]). Then G'(t) =F; dy'/dt and G"(t)=F;;
(dy'ldt)(dyildt) + Fi(D?*yi|dt?). Hence, F is convex in a domain D iff for every geodesic y =y(t)
in D we have d?F[y(¢)]/de? > 0.

In Part 11 we shall show how this notion of convexity leads to Lyapounov-like criteria for
the stability of conservative dynamical systems.

NRI. Problem BOI-11: Project RR 003-02-41-6153. This is an interim report on one phase of the problem: work is continuing. Manu-
seript submitted June 19, 1970.
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PART 1
Harmonic Maps

1-A. PRELIMINARIES

X and Y will always denote C> riemannian manifolds, and it will always be assumed that
X is compact. Greek (Latin) letters will be used for objects attached to X(Y). Local coordinates
will be written x = (x%), y = (y!), and the corresponding metric tensors, Christoffel symbols,
and curvature tensors will be denoted by g = (gas), b = (kij), ABy, [k, Ragvs, Sijre. Indices of
tensors will be raised and lowered in the usual fashion, and we shall always use the tensor summa-
tion convention.

Let f: X = Y be a C? map which is locally given by y = y(x). We set

, ayi ; azyi . i ik
o 7 . 1 —_ Y 1 l
Yo = 5a Yab = gag — Alpyy + Linyays - (N

Then y!, and y'g transform like tensors under coordinate transformations x — %, y — ¥. f is said
to be harmonic if g*8yig = 0, (i = 1,2,...,di(Y)). For motivation and some results in the theory
of harmonic map see Refs. [2-4]. We recall some basic definitions and results: f is said to be
totally geodesic if f sends geodesics into geodesics or, equivalently, if f**, the differential of
the differential of f, sends the horizontal sub-bundie of TT(X) into the horizontal sub-bundle
of TT(Y). The analytic condition that f be totally geodesic is given by yis = 0. Thus, every
totally geodesic map is harmonic. f is said to be an isometric map if f*g=h;i.e., g,,g=h,-.,~yf,yi;.
Anisometric map f: X — Y is totally geodesic (hence harmonic) provided di(X) = di(Y). The
composition of two totally geodesic maps is totally geodesic. The composition of a totally geodesic
map with a harmonic map is harmonic according to the following scheme: totally geodesic o
harmonic = harmonic. The composition of two harmonic maps is not necessarily harmonic.

A 1-form w = (w;) defined on a domain D of Y will be said to be convex if its covariant differ-
ential is a positive definite form; i.c., if for every p € D and non-zero vector ¢ € T,(Y), we
have wij(p) €& > 0, where wi; = dwi/dyi — I'fjwi. A function F will be said to be convex if dF
is convex. We write (w;;) > 0, (F;;) > 0 to indicate that o,F are convex. ( The reason for using
the strict inequality will be apparent from the proof of Theorem 1 below.) A manifold Y will be
said to be convex supporting if every domain D and Y with compact closure supports a convex
form. We note the following:

1. A compact manifold Y cannot be convex supporting.

Proof. Let w be any I-form on Y. We can assume that Y is orientable, since otherwise
we could apply the following argument to the lift of @ to the two-leaved orientable cover of Y.
It is well-known that

f hiiw;iVh dy = 0.
.

Therefore, w cannot be convex, since this would imply that the integrand is positive.

2. Every point has a convex-supporting neighborhood. For in a coordinate neighborhood
of the point define

n | e
Fiy) =33 (.
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Hence, from the continuity of I'f;, (Fi;) > 0 in some neighborhood of the point.

1-B. STATEMENT OF RESULTS

We shall write Rie (¥) < O to indicate that the riemannian sectional curvatures are all non-
positive, and given two 2-forms w,0 we write (wi;) > (0;;) to indicate that (w;; — 8;;) > 0. We
use Eisenhart’s conventions concerning the curvature tensors, so that, in particular, the Ricci
curvature is positive if (—R;;) > 0 [5]. We now present our results.

THEOREM 1. [fY is convex supporting, then every harmonic map from X to Y is necessarily
constant.

THEOREM 2. Suppose mw(X) is finite, and that Y has a_convex-supporting covering space;
i.e., we suppose there exists a covering Y — Y for which Y is convex supporting with respect
to the lifted metric of Y. Then every harmonic map from X to Y is constant.

Remarks. We recall that «r,(X) is finite if the universal covering space of X is compact.
Also, we may as well assume that the covering Y—>Yis universal, since if it is not, the universgl
covering U — Y can be factored through the given covering, and the induced covering U =Y
can be used to lift the convex form on Y to a convex form on U.

THEOREM 3. Suppose Y is complete, simply connected, and that Rie (Y) < 0. Then Y is
convex supporting. In particular, there exists a convex function on'Y.

Remark. None of the conditions of this theorem are necessary. In particular, there exist
convex-supporting manifolds ¥ with Rie (Y) = 0 (see section 1-C below).

Before going on to the next theorem, we mention some corollaries. First, note that the
universal covering space of any complete riemannian manifold with non-positive sectional
curvatures satisfies the conditions of Theorem 3. Hence, if 7,(X) is finite and Y is a complete
manifold with Rie (Y) < 0, then every harmonic map from X to Y is constant.

If the Ricci curvature of X satisfies (—R,g) > A(gap) for some positive constant A, then
according to a well-known theorem of Myers, 7(X) is finite (see Ref. [6], p. 105), so that the
only harmonic maps from X to a space with a convex-supporting covering are constants. This
condition on the Ricci curvature holds if X, say, is S* or IP*, n = 2, endowed with the standard
riemannian structures, or if X is a Lie group with trivial center. However, it should be noted
that if the standard metric of any of these manifolds X is replaced with an arbitrary metric, then
it still remains true that every harmonic map from X to a manifold with convex-supporting cover
is necessarily constant.

Remark. These results should be compared with the Corollary on page 124 of Ref. [2]
and also with Ref. [4]. For example, Eells and Sampson show that if Rie (Y) =< 0and if the
Ricci curvature of X is non-negative and positive at least at one point, then every harmonic map
from X to Y is constant.

Before stating our next theorem we recall that a map F is said to be proper if /- (compact) =
compact.

THEOREM 4. Let F be a convex C? function on a complete manifold Y. Then either F has
no critical points or F has a unique critical point p,. In the latter case F is proper, F(p) > F (p,)
for all other points of p of Y, and Y is contractible.
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PART 1I
Applications to the Stability of Hamiltonian Systems

1-A. GEODESIC FLOWS

We recall that a riemannian manifold is said to be complete iff every geodesic can be in-
definitely continued, and that this condition holds iff the manifold is complete with respect
to the metric induced on the manifold by the riemannian metric.

THEOREM. Let M be a complete riemannian manifold and let D be a compact domain of

M which supports a convex function F. Then any geodesic which enters D must leave D.
Such a geodesic may course return to D, but D cannot contain any entire geodesic y(t)
(—oo < t < ) or any half-ray y(t) (¢t = t,, for some t,).)

Proof. Let v = vy(t) be a geodesic for which y(z,) € D, and suppose that y(¢) remains in
D for all ¢t = ¢,. Let G(¢t) = F[vy(¢)] and let £ denote the velocity vector of y. As shown in the
Introduction,

G'=Fi¢ and G" = F¢i¢)

Since D is compact, there exists a positive constant A such that the bilinear form (F;; — Agi;)
is positive definite (in D). And since the velocity vector along a geodesic has constant length
(gi;€67 = 1), we have G"(t) = A, t = t,. Hence, G(¢) increases without bound as ¢t — «. But this
is impossible since F' must be bounded on the compact domain D.

1-B. THE JACOBI METRIC

Let ¥ be a continuously differentiable function on a manifold Y. The trajectories of the
conservative dynamical system arising from the “potential’” V are the solutions to the dynamical
equation D2y'/dt®> = — Rii(aV/ay/). In the special case V' = 0, the trajectories are merely the
geodesics of the manifold.

We recall some basic facts about the Jacobi metric [7]. Let H be a constant. The Jacobi
metric h;; is defined by

/};ij = 2(H - V)hij (l)

at points where H — ¥ > 0. It is well known that the geodesics corresponding to this metric are
(re-parametrized) trajectories of the dynamical system with potential ¥ and total energy f.
Hence, a discussion of Hamiltonian systems can be reduced to the case of geodesic flows.

AL N~
For later reference we note that the Christoffel symbols 1, associated with h;; are given by

1 NN
Ui = js —

1 Y 1 4 F14
( ). o

= \P oy TPy T g

1-C.  GENERAL REMARKS ON THE USE OF THE JACOBI METRIC

1. It should be emphasized that the Jacobi metric is constructed for each fixed value of H.
A given function F defined on a fixed domain D may be convex with respect to the Jacobi metric
corresponding to some values of H but not for others.
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6 WILLIAM B. GORDON

2. The Jacobi metric degenerates at those points for which H = V. In particular, a trajectory
can converge to a point at which H = V. (See Example 2 below.)

3. Suppose D is a maximal open convex-supporting domain, with compact closure, which
supports a function F which is convex in D and continuous on the closure of D. Itis conceivable
that a geodesic which enters D might remain in D (so that it would approach the boundary of D).
Referring to the proof of the theorem, to exclude this possibility it suffices to show that G'(¢) = 0
for some ¢t = t,. On the other hand, if such a geodesic remains in D, we must have G’ < 0, and
G(t) must converge to its infimum as ¢t — co,

2. EXAMPLES
We give two examples to illustrate the basic calculations involved in these convexity methods.

Example |. The Kepler Problem: Let {x;} denote standard coordinates and (, ) the standard
inner product on euclidean n-space. Set r? = (x,x) = Zx?. The potential function for the Kepler
problem is given by

__C iy oY _Cxi
V= r,sothdtV,—axi— S (3)
Set
. I, oF a2F
=2 50 that 25 =, 20— 5, .. 4
F(x) 577 80 that FySi L pov 8ij 4)
We have h;; = 8;j, I‘.";,,- = (0. Hence, from (1) and (2),
N
hi; = 2(H — V)3;; (5)
and
/\-i C i i
| ik = m (8./:\51.- -+ 8,.-x_; - S‘jl.'xi) . (6)
From the relation
K= eF P oF
ETIEYY Mgk

we get

, C C
Fi;= (l — 2—(——r_/—rV))8i'i + (‘rT("I_‘I__—V—))x,x, = adi; + bxix;,

where a,b = cic.
We wish to determine when (F;;) > 0: since I';; = Fj;, this reduces to determining the eigen-
values of the matrix M given M;; = Fij= ub;; + bxix;.

Case l. H=0,sothat H—V=H+ C/r > ().

Let ¢ be an eigenvector with cigenvalue u. Then M¢& = pé is equivalent to

aé + b (x,&)x = pé.
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There are (n— 1) independent vectors ¢ with {(x,£) = 0. Hence, a is an eigenvalue of multiplicity
(n—1). Also,

Clr 1

T2H+CIH 2 )

a=1

The remaining solution is given by ¢ = x, in which case (8) reduces to ax + br2x=x, so that,
taking the inner product of both sides with x, we get

,u,=a+br2=l+i(—ﬁclr—clr)>%. (®)
Hence, if H > 0, the entire space is convex supporting with convex function F. This means
that no trajectory x = x(¢) can remain in any compact set for all ¢ greater than any fixed value.
In fact, suppose r = r(¢) is bounded below. Then the solution is defined for all ¢ = 0, and from
convexity, G(¢) = F [x(t)] must eventually become monotonic;i.e., we have proved the elemen-
tary fact that if H > 0 and r = r(¢) is bounded below, then r(t) — « as t — o,

Case 2. H< 0. In this case the domain D given by r< —C/H is convex supporting, and the
analysis shows that every trajectory which enters D must leave D. (Of course, such trajectories
are ellipses, so that the trajectories return to D.)

Example 2. We consider the motion of a particle constrained to move on an ordinary
2-sphere in the presence of a uniform gravitational field.
Let the embedding of the sphere into euclidean 3-space be given by

w = w(B,p) = (sin 0 cos ¢) e; + (sin 0 sin @) e> + (cos ) e,

where e;, e:, e; are the standard basis vectors in 3-space, 6 = colatitude, ¢ = longitude. The
potential is given by V' = cos 6. The force field is directed downward from the north pole (8 = 0)
to the south pole (8 = 7).

Fix a value of H, (H > —1). Using 0,¢ as generalized coordinates, it is easy to show that a
trajectory with total energy H is given by the circular orbit

6= 00, (10)
where
1
— 3|cos 6,| = 2H
|cos 8, | o
and
(‘p2=_l/cos 0(}. (11)

Note that as a consequence of (11) this orbit occurs on the southern hemisphere (8 > #/2). Let
D be the domain given by

1 3|cos 6] < 2H, 6 > /2.

|cos 8]

Presently we shall show that D is convex supporting. We ask whether there exists a trajectory
in D (with energy H) which winds up toward the boundary of D, § = 6,. The answeris “no.”
Hence, any trajectory with total energy H which enters D must leave D.

Proof. Let F = F(0,p) = 1/2 {w — e3, w — e3). (Note that f = 1—V.) Direct calculation
gives

¥
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8 WILLIAM B. GORDON

sin® 6
€080 HH ~cos 6) 0
(Fij)=
sinZ §

0 (cos@+——~2(H_cos 9

) sin2 @
There is some difficulty about the fact that the spherical coordinate system is singular at the
poles, but it is easy to show that D is convex supporing; viz., (—F;;) > 0 in D.

_ To prove that the non-existence of winding orbits, it suffices to show that d(—F)/dt > 0,
if @ < 0. But dF/dt = (dw/dt, e;) = d{w,es)/dt = d cos 6/dt = (—sin 6)8.

Finally, to obtain an example of a trajectory converging to a point at which the Jacobi metric
degenerates, consider the case of a particle initially at rest at the south pole which is given just
enough impetus to move it up to the north pole. We have H = 1, H — V=0 at #=0. The equations
of motion are easily solved, and one finds that § ~ e~t as t — .

ADDENDUM

I have recently learned of a paper by Bishop and O’Neill [8] in which the authors establish
several implications of the existence of globally defined convex functions on a manifold (especially
a manifold of non-positive curvature) for the structure of the manifold. Thus, they obtained
Theorems 3 and 4 of this report, and much more besides.
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